Se tiene estimado que para 2026, más del 80% de las empresas habrán utilizado interfaces o modelos de programación de aplicaciones de Inteligencia Artificial Generativa, ya que se ha convertido en una de las principales prioridades de alta dirección y ha provocado una enorme innovación en nuevas herramientas más allá de los modelos básicos, de acuerdo con Gartner. Sin embargo, el mayor desafío está en la calidad de los datos que alimentan los proyectos de IA para el futuro.
”Los proyectos de IA ciertamente han estado llegando a los titulares en 2023. Hay una multitud de opiniones alrededor de las ventajas y desventajas, pero una cosa es cierta: la IA sólo es tan buena como la calidad de los datos que alimentan la tecnología,” señala Alejandro Luna, Country Manager de Infor.
Un estudio de 2022, hecho en Brasil por la asociación global GS1 ha señalado que apenas un 9% de la industria ha adoptado soluciones de inteligencia artificial. Un gran salto de los 4%, en 2021, pero un desarrollo aún bastante lento. La cantidad de empresas que está evaluando la posibilidad de adoptar la IA Generativa crece a cada día, pero el avance no se da de manera más acelerada por tres motivos: la gestión de datos en las empresas, el contexto macroeconómico que exige resultados a corto plazo y el desconocimiento de posibles beneficios y ventajas operativas en la adopción de esta tecnología.
“Según estudios, la adopción de la IA Generativa puede aumentar en 6% los ingresos de la empresa y en las compañías que deciden hacer un all-in en IA, puede representar hasta un 20% del EBITDA. Es una ventaja tremenda, pero hay que hacer lo básico, que es preparar la data para que la IA sea eficiente”, añade Luna.
Lo que se nota en el contexto empresarial es que el tema ‘transformación digital’ ha migrado del área de TI a la mesa de los CEOs y ocupa un puesto de mayor destaque en las decisiones corporativas. No es casualidad que la expectativa del IDC es que el sector de software empresarial alcance los USD$80 mil millones en 2023, un crecimiento de 5% en comparación con el año pasado. Uno de los grandes desafíos es tangibilizar los distintos beneficios de adoptar la IA Generativa.
Desafíos que frenan los proyectos de la IA Generativa
Alejandro Luna afirma que el ritmo de cambio en el mundo de GenAI es rápido y las organizaciones que no respondan a tiempo pueden quedarse atrás. Idealmente, las empresas deberían adoptar esta poderosa tecnología en lugar de rechazarla. Pero eso definitivamente no significa que la talla única sirve para todos cuando se trata de modelos GenAI y ciertamente hay una serie de desafíos que deben abordarse antes de que los modelos GenAI puedan obtener una adopción generalizada en entornos empresariales. En este contexto describe:
-
Confiabilidad. Si bien el contenido generado a partir de un modelo de lenguaje grande parece original, en realidad imita un patrón basado en un conjunto de datos de entrenamiento similar al que ha estado expuesto.
-
Problemas de privacidad. Los datos y las condiciones de entrada que comparten los usuarios se utilizan para entrenar el modelo más grande.
-
Sesgo. La calidad de los datos es importante a la hora de aplicar técnicas analíticas o de Inteligencia Artificial, porque los resultados de estas soluciones serán tan buenos o malos como la calidad de los datos utilizados. El hecho de introducir datos erróneos o sesgados conlleva riesgos. Los algoritmos que alimentan los sistemas basados en IA sólo pueden asumir que los datos a analizar son fiables, así que en caso de que sean erróneos, los resultados serán engañosos y el proceso de toma de decisiones se verá comprometido. Además, el tiempo y los recursos utilizados para realizar el análisis de datos habrá resultado inútil, lo que conlleva gastos.
Luna menciona que a pesar de los desafíos, las empresas que adoptan la IA de manera correcta pueden cosechar ventajas sustanciales. En términos de cómo evolucionará la IA generativa en los próximos cinco a diez años, las inversiones en la tecnología aumentarán enormemente, tanto en términos de generación de mejores modelos como en el espacio de hardware, con chips más rápidos y potentes y la necesidad de más anchos de banda de red.